Estimating coarse gene network structure from large-scale gene perturbation data.
نویسنده
چکیده
Large scale gene perturbation experiments generate information about the number of genes whose activity is directly or indirectly affected by a gene perturbation. From this information, one can numerically estimate coarse structural network features such as the total number of direct regulatory interactions and the number of isolated subnetworks in a transcriptional regulation network. Applied to the results of a large-scale gene knockout experiment in the yeast Saccharomyces cerevisiae, the results suggest that the yeast transcriptional regulatory network is very sparse, containing no more direct regulatory interactions than genes. The network comprises >100 independent subnetworks.
منابع مشابه
Modeling gene regulatory networks: Classical models, optimal perturbation for identification of network
Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption. On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications. This is not an unrealistic goal since genes which are regulated by gene regulatory ...
متن کاملEstimating the Saturated Hydraulic Conductivity of Soil Using Gene Expression Programming Method and Comparing It with the Pedotransfer Functions
Saturated hydraulic conductivity of soil is an important physical property of soil that affects water movement in soil, Since the measurement of saturated hydraulic conductivity by direct methods in the field or in the laboratory is hard, time-consuming and costly, the indirect methods are being used.The aim of this study is to estimate the saturated hydraulic conductivity from other soil prope...
متن کاملA Parallel Algorithm for Estimating Genome-Wide Gene Networks using Nonparametric Bayesian Networks
We present a novel algorithm for estimating genome-wide gene networks using nonparametric Bayesian network models [3]. The algorithm, which is called the Neighbor Node Sampling & Repeat (NNSR) algorithm, is capable of searching a Bayesian network structure consisting of more than 20 000 nodes, which is fitted to given gene expression data. To realize the large scale Bayesian network structure s...
متن کاملReconstructing Pathways in Large Genetic Networks from Genetic Perturbations
I present an algorithm that determines the longest path between every gene pair in an arbitrarily large genetic network from large scale gene perturbation data. The algorithm's computational complexity is O(nk(2)), where n is the number of genes in the network and k is the average number of genes affected by a genetic perturbation. The algorithm is able to distinguish a large fraction of direct...
متن کاملAssessing Experimental and Intelligent Models in Estimating Reference Evapotranspiration
Introduction: As the most important element in the hydrologic cycle which depends on climate variables such as near-ground wind speed, air temperature, solar radiation, and relative humidity, reference evapotranspiration (ET0) is normally computed through a variety of methods, each of which requires different and in some cases extensive data that are unavailable in many circumstances, especial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome research
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2002